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In this report, we discuss Vapnik’s support vector machines [13] for separable
and non-separable data. We discuss implementation issues, generalization per-
formance, and how they are remarkably different from existing classifier design
methodologies.

1. The optimal hyperplane as a quadratic programming problem

Consider a finite set S of vectors

(xhyl): (m27y2)) sreny (mkayk))

from the space R™ x {—1,1}. Consider a unit vector ¢ € R"™. We say that the
data is separable by the hyperplane

T-p=c
if
T ¢ >c, yi=1
Ti- ¢ <ec, yi = —1.
We define two functions of the data S and any vector ¢:
¢1(¢) = minx; - ¢
yi=1
c_1(¢p) = max x; - .
yi=—1
Define the margin of the hyperplane
T-p=c
to be

p(¢,¢) = min{ci(¢) —c,c—c1(d)}

A hyperplane is said to be optimal if it maximizes the margin over all hyper-
planes. Namely, it solves the optimization problem
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max p(¢, c) (1)
9| = 1. (2)
ci1te_1 c1(¢)—ca(9)

For a fixed ¢, p(¢, ) is maximized when ¢ = === and then p =
Consequently, we can say that a hyperplane (¢o, co) is optimal if

_ ci(do) + c-1(do)

) .

where ¢ maximizes

and the optimization problem
max p(¢) (3)
o] = 1. (4)
We begin by proving the first important fact:

Theorem 1 (Vapnik, 1998) The optimal hyperplane is unique.

Proof. Existence of the maximum of p on |¢| < 1 follows from the continuity of
p. We now show that the maximum must be achieved on the boundary |¢| = 1.
Suppose this was not the case and the maximum was achieved at the point ¢q
with |¢o| < 1. Since p is positively homogeneous, the point

«_ o
7 T

has the larger margin (40)
o _ P(go

p(¢ )_ |¢0| ’

giving a contradiction. Consequently, the maximum is achieved only at the
boundary |¢| = 1.

Since a maximization over a set of convex functions is convex, and concave
functions are just negatives of convex ones, the fact that p is a minimization — a
maximization over linear functions( which are both convex and concave) implies
that p is concave.

We now show that a maximum can only occur at one point on the boundary.
Suppose to the contrary, that the maximum occurs at two distinct points on
the boundary. Then since p is a concave function, the maximum must also be
realized on the line segment connecting the two points contradicting the fact
that the maximum may only be obtained on the boundary.
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O

To efficiently compute optimal hyperplanes we form an equivalent optimiza-
tion problem:

1
min §|1/J|2 (5)
Ty +b2>1, yi =1 (6)
iy +b< 1, yi = —1. (7)

Theorem 2 (Vapnik, 1998) The vector 1 that solves the above quadratic pro-
gramming problem is related to the optimal hyperplane vector ¢o by

Yo
do= 0.
|ol
The margin of the optimal hyperplane (¢o,co) is
1
p(po) = ——-
) = Tl
Proof. Let 1o denote a solution to the quadratic programming problem. Consider
Yo
do = .
|ol
Since 1)y satisfies the constraints for some b, it is clear that p(19) > 1 so that
Yo 1
p(go) = p(2) > ——.
(G0) = P55aD > Tl

To prove the theorem, we just need to show that there does not exist a unit
vector ¢* such that

1
p(9*) > —.
>
Suppose that such a ¢* exists. If we define
. 0
¢ =
p(¢*)
then it is clear that
p(¥7) =1
and )
07| = = <[l
4 p(¢*) ol
For y; =1,
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e, a@) e (@) o a@r) e (¥r)

so that ¢* satisfies the constraint

with
po ) +ei(¥)
5 :
For y; = —1,
2" < ca () = 0—1(1/1*)2— a@)  a@’) 4-20—1(2/1*)
— o) + ¢ (¥7) 4‘2071(111*) _ gy al) *‘2071(‘/’*)

so that ¢* satisfies the constraint
3311/1+b§—1, yz:_]-

with the same value of b.
Consequently, |[¢*| < |¢| and satisfies the constraints, contradicting the
assumption that 1)y was optimal for the problem {5,6,7}.

O
Theorem 3 (Kuhn-Tucker) Consider the convexr programming problem:
min f(z)
subject to the constraints
gl(m) S07 ’LZI,,k
where f and g;, ©=1,..,k are convez.
Define the Lagrangian
k
L(z, X0, \) = Xof(z) + > Nigi(x)
i=1
where A = (A1, ...y Ag). If * solves the convex programming problem, then there
exists Lagrange multipliers \§ and X* = (A}, ....., A;) both not simultaneously

zero such that the following three conditions hold

min L(CE, )\8, )\*) = L(SE*, AS: A*)
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If A\§ # 0, then these three conditions are sufficient for x* to be a solution
of the convex programming problem. In order for A # 0 it is sufficient for the
Slater conditions to be satisfied. Namely, there should exist an & such that

gi(#) <0, i=1,..k

If the Slater condition is satisfied, one can rewrite the Lagrangian as

k
L(z,A) = f(z) + ) Aigi()
i=1
and the three conditions are equivalent to the existence of a saddle point of the
Lagrangian, where (x*,\*) is said to be a saddle point of L if
L(z*,) < L(z*,\") < L(z, \")
for all x and X > 0.

Now let us return to the quadratic programming problem {5,6,7}. Rewrite
the constraints to obtain a the more compact form:

min 2 [y Q
yi(zi-¢+b) > 1. (9)

For separable data, the Slater condition is satisfied, so by the Kuhn-Tucker
theorem solving the quadratic programming problem is equivalent to finding a
saddle point of the Lagrangian

k
L0, b.X) = 0 = 3 Ayl -+ )~ 1),
i=1

where A > 0. Since the Lagrangian is convex in (¢,b) and concave in A\, we can
apply von Neumann’s theorem [8] to find the saddle by first minimizing L over
(1, b) followed my maximizing over A > 0.

Minimization with respect to (¢,b) determines the equations

aL :
=% =) Awiz; =0,
5 =¥ ; y

oL &
= = Z Aiyi = 0.
b =

Consequently, for the vector ¢ that defines the optimal hyperplane

k
U= Ay,
i=1
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k
Z Aiyi = 0.
i=1

Substituting into the Lagrangian we obtain

k k
1
W()\) = Z)\Z - 5 Z Ai/\jyiyj(xi . :L‘j).
i=1

ij=1
Upon maximization we obtain a A* > 0 such that the optimal vector ¢* can
be written

k
U= Ay
i=1
In addition, the equation
yi(l‘i'i/l*-f‘b*) —1:0

implies the vector z; is one of the closest to the optimal hyperplane( See Figure
1 where those closest are enlarged circles and crosses). Such vectors are called
support vectors.

Since the Kuhn-Tucker conditions

Ai(yi(wi -y +07) = 1) =0,i=1,..k

are satisfied, they imply that a non-zero value of A} corresponds to a support
vector x;.
Since

k
1/1* = ZA:ylxl =0.
i=1

is a linear combination of support vectors, the function describing the separation
hyperplane

flx)=x-¢¥* +b*

has the form .
Fle) =" Nyilw; - x) +b*
i=1

where the only nontrivial part of the sum is over the support vectors.
It will be important later in that both the function

k
fl@) =" Ayi(zi-x) +b°
=1

and the objective function

k k
1
W)= Xi— 3 > Ny (@i - ;).
i=1

ij=1
do not depend explicitly on the dimensionality of the vector x and x; but only
depend upon the inner product of such vectors.
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2. Complexity properties of optimal hyperplanes

Now we describe some of the consequences of choosing an optimal hyperplane
for classification. The representation of a hyperplane

x-Yp+b=0
by the tuple (¢,b) is called canonical( with respect to the data S) if
;2§|x‘/’+b| =1

We state, without proof, the main theorem concerning optimal hyperplanes.
The first proof of this theorem was obtained by Hush and Scovel [6].

Theorem 4 (Vapnik) Suppose that the data S lies in a ball of radius D. A set
of hyperplanes whose canonical representatives satisfy

Y| <A
has its VC' dimension bounded by
min([D?A?],n) + 1
where [| denotes the integral part.
Since the pairs (¢, b) are canonical, they satisfy the constraints
vi(zi -y +0b) > 1,
for the partition determined by
yi = sign(z; - + b).
Consequently, for this labelling, the margin of the hyperplane is

oy 11
ol 2 Tal 2 A

Consequently, this theorem can be formulated with respect the the margin
but requires some terminology.

Definition 1 Let X = R"™ be the n-dimensional FEuclidean space, and let H
be the family of linear classifiers c(x) = sign(h(x)) where h(z) is an affine
function. Further, let H, be the set of linear classifiers that dichotomize X using
hyperplanes of thickness p. More formally, define H, to be classifiers of the form

cp(z) = c(z), D(x|h=0)>p

where D(z|h = 0) is the distance from x to the hyperplane h = 0. (Note that
¢p(z) is not defined for {z : D(z|h = 0) < p}.) The margin of classifiers in H,
is defined to be p. Finally, let H 1 be the set of linear classifiers with thickness
greater than or equal to p, that is H,+ = Ug>,Hy.
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Theorem 5 Let S = {z1,z2,...,2r} C R™ denote a set of points contained
within a sphere of radius D. The VC dimension of H,+ restricted to S satisfies

2
VCOdim(H,+) < min([%],n) + 1.

Recall that we define a support vector (z;,y;) to be such that the constraint
Yi(zi " +0") =120
is active. Namely,
yi(mi -1/1* -l-b*) —1=0.

This implies the vector z; is one of the closest to the optimal hyperplane. In the
expansion,

k
V= Ay
i=1

a nonzero value of the Lagrange multiplier A* means that the constraint must
be active and consequently, the expansion of the optimal hyperplane vector ¢*
is in terms of of support vectors. Although the vector ¥* is unique, its expansion
in terms of support vectors is not. Let I, the essential support vectors, be the
set of support vectors that are in all the expansions of )*. We can then prove
the following theorems.

Theorem 6 (Vapnik)

K] < n.
Also,
Theorem 7 (Vapnik)
E(IK]) n
< <
Blerror) < 227 < %31

3. The support vector machine

Since the VC dimension of the set of linear classifier in R™ is n+1, it is clear that
large dimensional classification problems are difficult. However, a consequence of
Theorem 5 is that even if the dimension n is large, if the data can be separated by
alarge margin, then the VC dimension of classifiers with that margin is bounded
by

. .D?
min([—-],n) + L.
p
where p is the margin.

This observation gives rise to the the support vector machine as follows:
Map the data to a high dimensional feature space, and in this space classify
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using the optimal hyperplane. If the margin happens to be large then Theorem
5 suggests that we will obtain good generalization performance. However, even
if the optimal hyperplane in the high dimensional space has a good margin, the
dimensionality of this space may discourage computations there. To deal with
this problem, let us recall that both the hyperplane

k
f@) =) Nyilwi-o) +b°
i=1

and the objective function
k L
W(/\) = Z)\Z - 5 Z /\i/\jyiyj(mi - 1‘]‘).
i=1 i,j=1

do not depend explicitly on the dimensionality of the vector z and x; but only
depend upon the inner product of such vectors.
Suppose that we can map

$:R"—>H
from our space of covariates R™ to some Hilbert space H in such a way that
< O(x), 2(y) >= K(z,y)

for some known and easy to evaluate function K. Then finding an optimal hy-
perplane in ‘H amounts to optimizing the objective function

k k
1
W()\) = Z)\l — 5 Z )\i)\jyiyjK(a:i,a:j).
i=1 i,j=1

which then defines the classifier sign(f(z)) where

k
F@) =Y NyiK (zi,7) + b
i=1

Thus, even though H may be of very large dimensionality, we do not need to
operate there to construct an optimal hyperplane there.

Let us describe a simple example, evidently first described by Vapnik: Let
x = (z1,72) be a two dimensional vector. The function K (z,y) = (z-y)? can be
represented as K (z,y) = &(z) - &(y) where

&(z) = (2}, V22120, 23)
since
K(z,y) = (z-y)* = (z1y1 + 22y2)” = 27y} + 20191022 + 235 = B(x) - B(y).
It is interesting to note that the maps

b(z) = (m% — m%, 23;13;2,3:% + m%)
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and
&(z) = (mf,xlxg,xlmg,mg)
also accomplish the same task.
Indeed, although this simple example is very educational it is also misleading
since we can also map to infinite dimensional Hilbert spaces, just as long as we

can evaluate inner products there without going to the Hilbert space. A special
example of when this can be done is accomplished by utilizing Mercer’s theorem.

Theorem 8 (Mercer) Consider a compact subset C of R™. For a symmetric,
continuous, and square integrable function K (x,y) over C to have an absolutely
uniformly convergent representation

K(z,y) = Z ;¥ (z)%(y)

with a > 0 it is necessary and sufficient that

/ / K(z,9)g(x)g(y) > 0
cJC
for all g € L*(C).

Consequently, for any kernel K (z,y) which satisfies the condition of the the-
orem, the map @ : C — £2? defined by

z = (Vo W (z), JaaPa (), ........ )

satisfies
K(z,y) = &(z) - $(y).

4. Statistical properties of support vector machines

Although Vapnik’s theorem 4 is a good motivation for the support vector ma-
chine, the VC bound obtained depends upon the data and therefore VC theory
cannot be applied directly to obtain performance bounds for the support vector
machine. This situation is resolved by Shawe-Taylor et. al [11]. We quote here
their result, without proof.

Theorem 9 (Shawe-Taylor, Bartlett, Williamson, Anthony)

Suppose the support of the x marginal lies in a ball of radius D. Fix 6 and p. If
we succeed in classifying the data with an optimal hyperplane with margin greater
than p, and b < D, then with probability greater than 1 — § the generalization
error is bounded by

2 (577D? 8ekp? 8k
% ( e 10g(577D2)10g32k + log 5 |
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5. Support vector machines for non-separable data

When the data are not separable, the previous theorems do not apply. Indeed,
the margin is then negative. However, the performance bounds above have been
extended by Bartlett [1] to the case of nonseparable data as follows.

Theorem 10 (Bartlett)

Suppose the support of the x marginal lies in a ball of radius D. There is a
constant ¢ such that if we fix § and p, with probability greater than 1 — § the
generalization error is bounded by

m ¢ ( D? 1
- Z [ Z- 1002 log =
k‘+\/k<p2 og k+0g6>,

where m is the number of samples with margin less than p.

Consequently, any algorithm which tries to minimize the number of samples
with margin less than some fixed p could be a good candidate for a support vector
machine for nonseparable data. Recall the modified optimization problem that
determines the optimal hyperplane {8,9}. The optimal hyperplane is z-1* +b* =
0.

The constraints are meant to separate the data, and among those planes that
separate the data, minimizing [¢)|> accomplishes separation with the greatest
margin. If the data is not separable, then these constraints cannot be satisfied,
so an alternative formulation is needed. Suppose we relax the constraints to

yi(zi-p+b) >1-¢

with & > 0 but impose the penalty

where

f(n) =0, n=0 (10)
f(n)=1, n>0. (11)

This penalty counts the number of data points that are not classified correctly.
However, we now have gone from the optimization problem

R S
m1n§|1/1|
yi(wi-p+0b) > 1

with one optimization criteria to something like
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min%|@/}|2
min O(&)
yi(wi - +0b) > 1=

However, this is not a bonafide optimization problem. Indeed, there is no
canonical way to determine one so we have many choices to make. A possible
solution is the following:

min O(§) (12)
yi(zi - +b) >1-¢ (13)
[ < A® (14)

for some predetermined A.

This amounts to minimizing the number of points that have margin smaller
than the cutoff %. However, the smaller the margin cutoff, the larger the number
of points which will not satisfy the cutoff. On the other hand the larger the
margin on the remaining points the better for generalization bounds. Indeed, one
can see the balance between these two terms in the estimate of generalization

error of Bartlett [1]
m ¢ (D2 1
— —( =log’k +1log = ).
k+\/k<p2 og” k+ og(s)

where m is the number of samples with margin less than p = %.

The difficulty with this optimization problem is that this problem is close to a
known to be NP-Complete problem and is suspected to be hard. Therefore, since
we have already performed an adhoc modification because of non-separability,
let us perform another modification to reduce the computational complexity. We
wish to do so without giving up the existence of performance bounds. Consider
simply changing to a new loss function

0(n) =n".

This function tends to the original as p tends to 0. However, for p=1or p =2
we can solve the optimization problem in polynomial time. Unfortunately, for
p = 1 there are no performance bounds. On the other hand, Shawe-Taylor and
Cristianini [12] have performance bounds for p = 2.

Theorem 11 (Shawe-Taylor, Cristianini)

Suppose the support of the x marginal lies in a ball of radius D. Fix p and
0. With probability greater than 1 —§, the generalization error corresponding to
any hyperplane x -1 + b = 0 is bounded by

2 1 21 +1 2
E(hlog(si;f)log32k+log 80k( (;_ng) >
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where

L = 6L+ VO*)? +2.25D/6%]
p?

and
k

0" = (max (0,p — yilz: -9 +b))"

i=1

Consequently, for this optimization problem, not only can we compute its
solution but we can estimate its generalization error as a function of prescribed
p and computed @. Since our optimization problem, for fixed p, amounts to
minimization of @, the optimization problem amounts to optimization of the
performance bound. One can also see the balance between the @ and p in the
function
_ 65[(D +V6*)% +2.25DV6"]
= pE
The “optimal” balance can be determined using an iterative scheme to find the p
that minimizes h. Such a scheme would require that we solve the QP optimization
problem at each iteration.

Alternatively, we could consider a modification that optimizes p and @ si-
multaneously, such as

h

min (3l +CO(0)) (15)
yi(z; - +b) >1-¢, (16)
& 2> 0. (17)

This problem shares the same computational advantages as the previous. The
constant C' represents the balance between the margin cutoff and the number of
training points with margin less than this cutoff. Once again we could consider
iterative schemes for the determination of the constant C'. Of course, the error
bounds of Shawe-Taylor and Cristianini [12] still apply here.

Algorithm development for SVMs has focused on the problem {15,16,17}
with p =1 (i.e. 8(n) = n). Although this creates a slight disconnect between the
terms being optimized and those in the bound, it is believed to produce superior
results in practice.

6. Algorithms for Support Vector Machines

Let

and
zi - zj = P(x;) - P(x;) = K(zi, ;)

Examples of kernels commonly used for real-valued data include
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1. Polynomial

K(z,y) = (z-y+1)¥
2. Gaussian (RBF)

K(z,y) = e~ lz=vl*/26%

3. Sigmoid (neural network)
K(z,y) = tanh (a;(z - y) + ao)

Note that restrictions must be placed on (a1, ag) to satisfy Mercer’s condition [3].
We wish to solve the following (primal) quadratic programming (QP) problem
to produce a linear classifier in H,

min L[[9[2 +C 35 &
st yi(zi - +b)>1-¢& (18)
&>0, i=1,2,...,k

Cortes and Vapnik call this the “soft margin formulation” [4]. This problem has
size dim(z) + k variables. The size of dim(z) in the SVM can make this problem
too large to solve on a digital computer. Fortunately there is a dual form with
more manageable size. Consider the Lagrangian of the QP above,

L(y),b,&, ), @) = HMP+C§:& }:A (Wilzi-p+0) =14+ &) — E:m§

Differentiating with respect to ,b,¢ and applying the Kuhn-Tucker optimality
conditions gives

Pt = Z Aiyizi (19)
> Ay =0 (20)
a;+X=C (21)

Substituting (19-21) into the Lagrangian yields
L™, b",6", X\ a) = ZA ——ZZ)\)\ YiliZi * %
i

Maximizing L with respect to A, @ and incorporating the conditions in (20-21)
gives the Wolfe Dual optimization problem

max —2XA - (QA) + A -1
s.b A y—O (22)
0<N<C, i=1,2,..,k

where () is of the form

Qij = viy;(zi - zj) = yiy; K (x4, 1)
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This problem has size k (independent of dim(z)!). Further, it can be solved using
computations that live entirely in the original data space R™ x {1, —1} through
use of the kernel. @) is positive semidefinite, making this a concave QP problem
with simple constraints (one equality constraint and k& box constraints). Thus,
it admits a polynomial-time solution [2].

It is easy to show that () is symmetric and positive semi-definite. If we
define Z = [y121,y222, ..., yr2k) then Q is equal to ZTZ, and () is symmetric by
QT = (ZTZ)T = Q and positive semi-definite by u - (Qu) = |Zu|?> > 0.

For small to moderate values of k the Wolfe Dual can be solved using standard
algorithms for convex QP problems [5] (although care must be taken to account
for the reduced rank of Q). For large k however, the storage requirements can
be excessive for (most) modern day computers. For example, with k£ = 50,000
approximately 20 GBytes of storage would be required for (). This barrier can
be overcome by decomposing the original QP problem into a collection smaller
problems.

Suppose we partition A into two sets, a working set Ay and a non-working
set A . Similarly y is partitioned into yw and yn, and @ is partitioned as follows

Q= [QW QWN:|
Qnw QN

where Qwn = @nw. Then (22) can be written

max —3Aw QwAw + Aw - (1 = QwrAn) — ANQNAN + Ay - 1
st. Aw - yw +Av-yn =0 (23)
0<\<C, i=12 .k

With Ay fixed this becomes a QP problem of size dim(Aw) with the same
generic properties as the original. This motivates algorithmic strategies that solve
a sequence of QP problems over different working sets. The key is to select a
working set at each step that will guarantee progress toward the original problem
solution.

One approach is to design the sequence of QP problems to search for a
working set that contains all the support vectors. This approach is motivated
by the fact that we expect the number of support vectors to be small, and that
the solution to (22) can be obtained by solving a (smaller) QP problem over
the support vectors alone. To see why, recall that A} # 0 corresponds to an
“active” constraint in the primal, which in turn corresponds to a support vector.
Typically n < k, and since Theorem 6 gives |K| < n, it is reasonable to expect
the number of support vectors to be small (this expectation is less plausible in
the non-separable case). Now, if the support vectors are known the solution to
(22) can be obtained by placing them in the working set and solving (23) with
Ay = 0. In the chunking [13] strategy the working set is initialized to a subset
of the data, and an initial QP problem is solved. Then the non-support vectors
from this solution are moved to the non-working set and a “chunk” (subset) of
samples from S — W that violate the Kuhn-Tucker optimality conditions are
moved to W. This forms a new working set, and the process is repeated until all
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samples satisfy the Kuhn-Tucker optimality conditions. A proof of convergence
for this process is given by Osuna, et.al. [9], who also propose a slightly different
approach. Their decomposition strategy is similar to chunking except that the QP
problems are always the same size [9]. The working set is initialized to a subset
of the data, and an initial QP problem is solved. Then the non-support vectors
from this solution are “swapped” with a subset of samples from S — W that
violate the Kuhn-Tucker optimality conditions. This forms a new working set,
and the process is repeated until all samples satisfy the Kuhn-Tucker optimality
conditions.

Note that both chunking and decomposition require the working set to be
larger than the final number of support vectors, which is not known ahead of
time. Alternatively we can modify the algorithm so that it allows support vec-
tors to be swapped out of the working set. Employing swaps that remove sup-
port vectors from the working set leads to QP problems for which Ay # 0 in
(23), but this is easily accommodated. The key is to “swap in” samples from
the non-working set that guarantee a reduction in the original criterion. steep-
est feasible descent direction vector [7]. One possible strategy is to select sam-
ples that correspond to the largest components of the Software that employs
this method can be obtained at http://www-ai.informatik.uni-dortmund.de/
FORSCHUNG/VERFAHREN/SVM_LIGHT /svm_light.eng.html. Platt’s Sequen-
tial Minimal Optimization (SMO) algorithm employs essentially the same strat-
egy, but restricts its working sets to size 2 [10]. The advantage of SMO is that
the “size 2” QP problems have a simple closed form solution.
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